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Abstract 

       In this paper, we consider a fluid queue with an infinite buffer capacity which is both filled 

and depleted by fluid at constant rats. These rats are uniquely determined by the number of 

customers in an M/M/1/N queue with constants arrival and service rates.  An alternative approach 

to obtain analytical expression for the joint stationary distribution of the buffer level and the state 

of M/M/1/N queue is given. Through our approach we obtain the determinant of a tridiagonal 

matrix in terms of the roots of Chebychev's polynomial of second kind. Moreover, we illustrate 

the effectiveness of the derived formula through graphs and numerical discussion.  

KEYWORDS: Fluid queue, M/M/1/N queue, stationary state, buffer content distribution, Laplace 
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1. Introduction 

In the literature, Stochastic fluid flow models become one of the important topics in queueing 

theory
 
which have a wide area of applications in many categories as telecommunications, 

computer systems and manufacturing models, for example see among others Anick et al.(1982) 

Coffman et al. (1991), Meitra (1988) Stern and Elwalid (1991). In such models, the bursts of data 

are usually transmitted with high-speed networks in packets or cells. Therefore, the use of fluid 

models is very useful, since the variations on the cell level are almost negligible compared to 

those on the more important burst level. In Fluid models it can manipulate models which have 

continuous customer or stream of nature it prove to be efficient for studying performance 

analysis of telecommunication and manufacturing models. Many authors and researchers analyze 

fluid models which have infinite state space of the Markov process that modulates the input rate 

of fluid in buffer as (Adan and Resing (1996), Sericola and Tuffin (1999) and Virtamo and  

Norros (1994), but a few of them analyze fluid models which have a finite state space as (Lenin 



and Parthasarathy (2000), and O'Reilly(1986)). Lenin and Parthasarathy (2000) find a closed-

form analytical expression for eigenvalues of the underlying tridiagonal matrix and the 

distribution of the buffer occupancy by using some identities of tridiagonal determinates for 

general case N takes finite value. In O'Reilly (1986) the explicit expression for the density 

function of the buffer occupancy in steady state is obtained in special case.  Our motivation in 

this paper is to study a fluid queue driven by an M/M/1/N queue (Sharma &Gupta (1983), 

Tarabia (2000)) with the direct approach to find an analytical explicit expression for the 

stationary distribution of the buffer occupancy for general case N takes finite value. In order to 

achieve it we convert system of differential equations into system of algebraic equations by using 

Laplace transform technique then computing the invers of the matrix of this model in terms of 

roots of Chebychev's polynomial then using the partial fraction method to obtain the demand 

solution. This technique is more efficient and easier to manipulate this problem. We restrict our 

analysis to a fluid queue has explicit constant input and service rates. 

The rest of the paper is organized as follows: In Section 2, notations and preliminaries are 

provided. The model analysis is discussed in Section 3. In Section 4, we analyze the solution 

methodology. The numerical illustration is discussed in Section 5. In section 6, it is include the 

conclusion and future work. 

2. Preliminaries  

We consider a fluid queue driven by an M/M/1/N queue which can be represented by two 

dimensional Markov process{( ( ), ( )), 0}X t Q t t  . The first component is acted  by a continuous 

time Markov chain { ( ), 0}X t t  with arrival rate  and service rate  , where ( )X t is a random 

variable denoting the number of customers in the system at a time t and taking the values

{0,1,2,..., }S N  and let the generator of the process { ( )X t } be denoted by D , that is  
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where     and     . The second component is acted by a fluid queue with an infinite buffer 

which has input rate 
jr and service rate jq such that j jr q , 0jr   to avoid the trivial case 

where the queue remains always empty and ( )Q t  denotes the content of the buffer at a time t  

with ( ) 0Q t   where the content of the buffer cannot decrease whenever the reservoir is empty. 

That is, 

0, ( ) 0 0( )

, .

j j

j j
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Let the drifts of fluid queue represent the difference between the input and service rates  

j j jd r q    ,    j S  and {0,1,2,..., }S N , 

we take in attention the stationary behavior of that fluid queue so, we suppose the following 

stability condition: 

                                                                  
0

( ) 0
N

j j j

j

p r q


  ,   

where 
jp be steady state probabilities of the background M/M/1/N queue. Also, through our  

analysis we suppose that this stability condition is satisfied. We define the buffer occupancy 

distribution  ( , )jF t u  as 

( , ) { ( ) , ( ) }jF t u prob X t j Q t u   , j S  , 0u  , 

where ( , )jF t u denotes the probability that the regulating process is in state j and the buffer 

content does not exceed u at a time t . In steady state case  

( ) lim { ( ) , ( ) }j
t

F u prob X t j Q t u


   , 

with the boundary conditions are 
0 (0) 1F  and (0) 0jF  . 

3. Model analysis 

For any fluid queue and for 0u  , we have                          

    1 1 1 1

( , ) ( , )
( , ) ( , ) ( ) ( ) ( , )

j j
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which is called the govern differential equation for all Markovian fluid queues. 

Special cases: 

 

 



(i) If 0j  , equation (1) becomes: 

         0 0
1 1 0 0 0 0

( , ) ( , )
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t u
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                                                          (2) 

(ii) If j N , equation (1) becomes: 

   1 1 1 1

( , ) ( , )
( , ) ( , ) ( ) ( ) ( , )N N
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Consider the following conditions  

 (i) 
j jr q r q                for all j S . 

(ii) lim ( )u j jF u p  . 

(iii) The Kolmogorov forward equations for the two dimensional Markov process

{ ( ), ( ), 0}X t Q t t   in steady state i.e.  
( , )

0
jF t u

t





. 

Applying conditions (i) and (iii) on equations (1)-(3), we get  

   0
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and 0u  for all states .j S Define  

                                                
0

( ) [ ( )] ( )u

j j jL F u e F u du 


    

After taking Laplace transform and using the boundary conditions and making some calculations 

equations (4)-(6) become: 

                              
0 1[ ] ( ) ( ) 1

r q r q
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which can be written in the matrix notation as  

                                                                                   . ( )A B                                                                                                                                                                                                                                                                                                                                                                                                            

where 

                     0 1 ( 1) 1( ) [ ( ), ( ),..., ( )]T

N N             and ( 1) 1[1,0,...,0]T

NB   ,  hence               

( 1) ( 1)

,
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where  

               a
r q





, 

( )
b

r q

 



 


, and  c

r q





                                                               (10)  

4. Solution methodology 

To derive the solution for the above system we can write      

                                                                   1( ) A B                                                                                                               

or                          

                                                                 
*

( )
det( )

A

A
    ,                                                       (11) 

where          0 ( 1) 1* [ ] ,0T

j NA A j N     and 
0 jA  is the minor element in the     column 

and     row of the matrix A.                                                                                                                                                                                              

THEOREM 1.  

For any nonnegative integer  , the value of the determinate of the matrix     is given as:                                    

1 1 1det( ) ( ) ( ),N NA           

where   and   are the eigenvalues of the matrix (
   
  

) and are given as:    

,Je
r q


 


  Je

r q


 


   , 1J    and 

1cos ( )
2 .

b

a c
                                                                   

Proof.     

We know that the determinate of matrix A has the following formula:  



                       
1det( ) ( ). ( . )N NA b c D ac D                                                                            (12) 

where  

        ( ) ( )

det , 3,4,....i

i i

b c

a b c

D i N

c

a b a


 
 
 
  
 
 
                                            (13)

 

Also 

(
  
    

)    (
    
    

) 

where 

  (
   
  

) 

Recursively we have 

(
  
    

)     (
  
  
)                      

With         and    (   )(   )    . 

Write the matrix   in the spectral form as:  

  (   )  (
  
  

) (
  
  

) (
    
   

), 

where 

                                         

2 4
,

2

b b ac
 

 
 .                                                              (14) 

After some calculation  
iD  has the following form: 

            1 1 1( ) [( ) ( )], 0,1,...,i i i i

iD i N
r q


            


 .                             (15)                                                      

Hence, 

                 1 1 1( ) [( ) ( )]N N N N

ND
r q


           


                                                                                                                                                                                                                          

Substituting from (15) for           into equation (12) and using the characteristic equation 

of the matrix    after some calculations, we can complete the proof.                                                        

                                                                                                                                                                                                              



 

 

 

Lemma 1. 

For any state   ,  
0 jA  has the following form  

                               0 ( 1) j j

j N jA a D          ,  j S  

where the  
N jD 

  is given as equation (13) with      .   

Proof.   

Clearly, we have 
00 NA D ,

01 1. NA a D   , 2

02 2NA a D   and 3

03 3NA a D    

So, in general case we obtain  

                                                    0 ( 1) j j

j N jA a D    ,                                                      

Theorem 2.  

For every j S , the buffer occupancy distribution is: 

1

2 [ 2 cos ]

1
1

sin [sin sin( 1) ](1 )
( )

(1 ) ( 1) (1 2 cos )

j

j N u
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
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   
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           (16)

 

where 





 is traffic intensity and
1

i

N


 


 

Proof.    

Writing 

                                     1 1

0

( ) ( )
N

N N k N k

i

       


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  also,  

                                    
,

0 1

( 2 )
NN

k N k

N i

i i

y    

 

     ,                                               (18) 

 where 

                     , cos( )N iy   , 
1

i

N


 


1,2,..., ,...,i k N                                                   (19)                  



are the   roots of the     degree Chebychev's polynomial of the second kind. 

These roots are known to be real and distinct see (Abromowitz and Stegun(1970))   

So, we can rewrite the denominator of ( )  given in equation (11) as: 

                           
,

1

det( ) ( 2 )
N

N i

i

A y   


                                                                  (20)                                                                          

Substituting from Eq. (20) in Eq. (11) and using the partial fraction method, we obtain for any 

           : 

                              0

1 ,

( )
( 2 )

N
k

j

k N k

c c

y
 

   

 
 

                                                         (21) 

Such that 0 1 2, , ,..., Nc c c c are unknown coefficients need to be computed. 

To obtain 0c , multiply equation (20) by   and take the limit when   tends to zero so, we get 

                                                                    
0

0

lim . ( )jc


  


                                                   (22)                                                                                                 

Substituting in equation (14) by  0   and after some calculation, we have 

                 
r q


 


               and                    

r q


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
                                                        (23)                                                                                                                 

Substituting  from Eq.(23) and using Theorem 1, and Lemma 1 after simple calculations, we 

have  

                                
0 1
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Similarly, we can obtain kc  as the following.  

 Multiply equation (21) by 
,[ ( ) 2 ]N kr q y        and take the limit when   tends to k  

Where 
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So, we have  
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1
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where 
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and             
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Using Chebyshev’s polynomial definition and after some simplification, we get  
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Substituting from Eqs. (30)-(32) in (28) , we get 

         

1, 2
,1

2

,

( ) 2
2 ( 1) ( 1)(1 2 )

lim[ ]
( ) sin( ) 2k

N
N

k NN i
N ki

N

N k

x y y
J N y

r qr q y 

   
   

   







  
   


   


      (33) 

Similarly, 
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where 
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Also,                                                     
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Substituting (39) and (40) in (38) and after some simplification we get, 
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1 1 2
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Substituting Eqs. (35)- (36) and (37) in (26) after some simplification, we obtain  
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Substituting from Eqs. (24) and (38) and then take inverse of Laplace transform, we can 

obtain easily:  
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5. NUMIRECAL ILLUSTRATION 

In the previous section, we have obtained an explicit expression for the joint stationary 

distribution of the buffer level and the state of M/M/1/N queue. Numerical calculation are made 

to prove the accuracy and the efficient of our formula. In Figure 1. we plot the relation between 

( )jF u and u  for different states 0,1,2,3,4j   the figure shows that the result carve is according 

to  carve of cumulative function and tends the value 
1

(1 )

(1 )

j

j N
p

 

 





  as      it is shown in 

Figure 1. 



                                  

                                      Figure 1: illustrates ( )jF u versus u for different values of j  

  In Figure 2., we plot the relation between the density function of the buffer content ( )b u  and u   

   

                                                     Figure 2: illustrates ( )b u versus  u   
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